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The incorporation of iron losses in the finite element method is important for the accurate predictions of the performance of low-

frequency electromagnetic devices. Hysteresis models such as Jiles-Atherton and Preisach are frequently used for this purpose. The 

Preisach model is more accurate and can represent a broad range of magnetic materials. However, it is computationally very expensive 

and therefore hysteresis coupled finite element simulations take too much time to solve. In this work, a computationally efficient 

method of implementing the Preisach model is presented using the closed form expression for modeling the Everett function which not 

only reduces the total execution time of the model but also simplifies its implementation. The results computed using the proposed 

approach are compared against the conventional implementation and a speed up of 2.75 times has been achieved. The proposed 

approach is also valid for the H-based vector Preisach models.  

 
Index Terms—Ferromagnetic materials, finite Element Method, hysteresis modeling, iron loss, Preisach Model.  

 

I. INTRODUCTION 

ITH the development of more powerful computers and 

numerical techniques, the use of hysteresis models, such 

as the Jiles-Atherton [1] and Preisach [2] models is becoming 

increasingly popular in finite-element method (FEM) based 

computer-aided design (CAD) simulations for the calculation 

of iron losses in electromagnetic devices.  

Out of the two hysteresis models, mentioned above, the 

Preisach model is considered to be more accurate [3]. 

However, the solution of the classical Preisach model (CPM) 

is very time-consuming. The problem becomes even more 

computationally expensive for the vector extensions of the 

CPM. This is because the vector Preisach model is merely the 

sum of scalar models needed to solve a number of projections 

of the input vector magnetic field in the space [2]. Therefore, 

any improvement in terms of the computational cost of the 

CPM will have a major impact on the vector Preisach model 

for speeding up hysteresis coupled FEM simulations. 

 In this paper, we have proposed a closed form expression to 

model the Everett function with five unknowns only. The use 

of a closed-form expression for modeling the Everett function 

not only reduces the computational time of the Preisach model 

but also simplifies the algorithm by eliminating the need for 

search and interpolation schemes.  A brief review of the CPM 

is presented in Section II. The conventional implementation of 

the CPM using the “raw” Everett function and the proposed 

modification are presented in Section III. Finally, the results 

using the proposed modification are presented in Section IV 

where they are compared against the conventional 

implementation of the CPM. A speed up of 2.75 times is 

achieved. 

II. THE CLASSICAL PREISACH MODEL 

The CPM [1] is a phenomenological model that presumes a 

ferromagnetic material to be composed of a large number of 

rectangular switches similar to magnetic domains [4]. Based 

on the history of the input magnetic field, the next value of the 

output is determined.   

The mathematical description, identification, and 

implementation of the Preisach model are described in [5]. 

The output of the CPM is calculated using the equations given 

below [2]. 

 

for dB/dt > 0  

𝐵(𝑡) = 2 ∑ (𝐸𝐹(𝑀𝑘 , 𝑚𝑘−1) − 𝐸𝐹(𝑀𝑘 , 𝑚𝑘)) +𝑛−1
𝑘=1

2𝐸𝐹(𝐻(𝑡), 𝑚𝑛−1) − 𝐸𝐹(𝛼𝑜, 𝛽𝑜).       (1) 

 

for dB/dt < 0  

𝐵(𝑡) = 2 ∑ (𝐸𝐹(𝑀𝑘 , 𝑚𝑘−1) − 𝐸𝐹(𝑀𝑘 , 𝑚𝑘)) −𝑛−1
𝑘=1

2𝐸𝐹(𝑀𝑘, 𝑚𝑘−1) − 2𝐸𝐹(𝑀𝑛, 𝐻(𝑡)) − 𝐸𝐹(𝛼𝑜, 𝛽𝑜). (2) 

 

Where, B(t) is the output magnetic flux density, H(t) is the 

input magnetic field intensity, EF(Mk,mk) is the Everett func-

tion corresponding to the history of input extrema (Mk,mk), and 

o and o are the maximum switching fields which correspond 

to the positive and negative saturation, respectively.  

III. THE EVERETT FUNCTION 

The Everett function is one of the identification methods [5] 

of the CPM and can readily be computed using the measured 

data i.e. concentric B-H hysteresis loops. The use of the Ever-

ett function eradicates the need for solving the double integra-

tion in the original model equation [2].  

Conventionally, the Everett function is stored in memory as 

a two-dimensional upper triangular matrix, and 2D interpola-

tion schemes, such as bilinear or bicubic, are used to obtain 

data in between the rectangular grid of the matrix EF(x,y) for 

the given input points. To do this, a search algorithm is im-

plemented and a 3x3 or 4x4 matrix inversion is needed multi-

ple times at each time step (for every function call) to compute 

the unknown coefficients needed for the bilinear interpolation 

scheme. This adds to the computational cost of the CPM.  

It has been shown in [6] that the higher order derivatives of 

the Everett Function should be continuous to improve the con-

vergence of the hysteresis coupled FEM simulations. There-

fore, the bicubic interpolation scheme is considered to be bet-

ter from the convergence point of view than the bilinear inter-
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polation [6] but its use increases the complexity of the algo-

rithm.  

Both of these issues have been addressed in this work. First, 

the raw Everett function is computed from the measured B-H 

loops for a 35WW300 non-oriented electrical at 10 Hz. A 

modified logistic distribution function (LDF) in 2D (3) is then 

used to represent the raw data points of the Everett function. 

 

𝐸𝐹(𝐻𝛼 , 𝐻𝛽  ) = 𝒂 + 𝒃 (tanh (
𝐻𝛼−𝒄

𝒅
) + tanh (

𝒄−𝐻𝛽

𝒅
) ) +

𝒆𝐻𝛼𝐻𝛽               (3) 

 

Where a-e are the unknown parameters and their values are 

given in Table 1. The last term eHH in (3) has been added to 

the LDF to slightly increase the slope of the flat top area of the 

surface in Fig. 1 which improves the quality of the fit.  
 

 
 
Fig. 1. Surface fitting of the Everett function using the modified 2D logistic 

distribution function (2). The black dots represent the data obtained from the 

concentric hysteresis loops and the red dots represent zeros. R2
Adj = 0.946 

 

 
 

Fig. 2. Plots of the tanh(x) function and its derivatives for  - < x <. 
 

TABLE I 

PARAMETERS IDENTIFIED USING SURFACE FITTING OF (3) TO THE RAW 

EVERETT FUNCTION 

Parameters Value 

a 0.07313 

b -0.7111 

c 9.498 
d 9.115 

e -4.478 x 10-6 

 
 

Fig. 3. Comparison between the B-H loops computed using raw and surface 

fitted Everett functions. 

It can be seen in Fig. 1 that the Everett function is symmetric 

around H= - Hline in the H-H plane which in turn 

reduces the number of unknown parameters in (3) to five only. 

There is no need to store the raw data points of the Everett 

function. Also, the higher order continuity of (3) for improved 

convergence has been demonstrated by plotting the tangent 

hyperbolic function and its higher order derivatives in Fig. 2. 

IV. RESULTS AND DISCUSSION 

After the unknown parameters for (3) are identified using 

nonlinear least squares method in Matlab curve fitting toolbox, 

the output magnetic flux density B is computed using (1) and 

(2) for a given input H field intensity. The resulting B-H loops 

are compared against the conventional implementation of the 

CPM using the raw Everett function with the bilinear 

interpolation scheme in Fig. 3. It can be seen that the B-H 

loops computed using the two implementations are slightly 

different especially at the lower induction levels. This is 

because of the fact that the output of the CPM is very sensitive 

to the quality of the surface fit. On the other hand, the 

implementation of the scalar Preisach model is 2.75 times 

faster than the conventional implementation which is very 

useful in terms of implementing the vector Preisach model in 

hysteresis coupled FEM simulations. It is also important to 

note that (3) is only valid for the direct (H-based) CPM 

because the shape of the Everett function is different for the 

inverse (B-Based) CPM.  
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